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Preface

This is the final report on this project which was concerned with the analysis of

cavity-backed antennas and more specifically spiral antennas. The project was a continua-
tion of a previous analysis, which employed rectangular brick elements, and was, thus, re-
stricted to planar rectangular patch antennas. A total of five reports were submitted under
this project and we expect that at least four journal papers will result from the research de-
scribed in these reports. The abstracts of the four previous reports follow this page. The
first of the reports (028918-1-T) is over 75 pages and describes the general formulation
using tetrahedral elements and the computer program. Report 028918-2-T was written af-
ter the completion of the computer program and reviews the capability of the analysis and
associated software for planar circular rectangular patches and for a rectangular planar spi-
ral. Measurements were also done at the University of Michigan and at Mission Research

Corp. for the purpose of validating the software. We are pleased to acknowledge a partial
support from Mission Research Corp. in carrying out the work described in this report.
The third report (028918-3-T) describes the formulation and partial validation (using 2D
data) for patch antennas on a circular platform. The 3D validation and development of the
formulation for patch antennas on circular platforms is still in progress.

The fourth report (028918-4-T) is basically an invited journal paper which will ap-
pear in the J. Electromagnetic Waves and Applications in early 1994. It describes the ap-
plication of the finite element method in electromagnetics and is primarily based on our
work here at U-M.

This final report describes the culmination of our efforts in characterizing complex
cavity-backed antennas on planar platforms. The report describes for the first time the

analysis of non-planar spirals and non-rectangular slot antennas as well as traditional planar
patch antennas. The comparisons between measurements and calculations are truly im-
pressive. Another unique aspect of this work is the incorporation of the FFI" as part of the
BiCG solver by overlaying a structured triangular mesh over the unstru.ctur.ed, mesh. The
implementation of this BiCG-FFF solution algorithm is important in mmlmlzmg the CPU
and storage requirements. This final report will be submitted for publication in a refereed

journal.
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A FINITE ELEMENT BOUNDARY INTEGRAL

FORMULATION FOR RADIATION AND SCATTERING
BY CAVITY ANTENNAS USING TETRAHEDRAL

ELEMENTS

J. Gong, J.L. Volakis, A. Chatterjee and J.M. Jin
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Ann Arbor, Michigan 48109-2125

ABSTRACT

A hybrid finite element-boundary integral formulation is developed us-

ing tetrahedral/triangular elements for discretizing the cavity/aperture of
microstrip antennas/arrays. The tetrahedral elements with edge based lin-

ear expansion functions are chosen for modeling the volume region and tri-

angular elements are used for discretizing the aperture. The edge-based

expansion functions are divergenceless thus removing the requirement to

introduce a penalty term and the tetrahedral elements permit greater ge-

ometrical adaptability than the rectangular bricks. The underlying theory

and resulting expressions are discussed in detail together with some numer-
ical scattering examples for comparison and demonstration.
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Electromagnetic

microstrip patch

scattering and radiation from

antennas and spirals residing

in a cavity

J. L. Volakis, J. Gong, and A. Alexanian

Abstract

A new hybrid method is presented for the analysis of the scat-

tering and radiation by conformal antennas and arrays comprised of

circular or rectangular elements. In addition, calculations for cavity-

backed spiral antennas are given. The method employs a finite ele-
ment formulation within the cavity and the boundary integral (ex-

act boundary condition) for terminating the mesh. By virtue of the

finite element discretization, the method has no restrictions on the

geometry and composition of the cavity or its termination. Further-

more, because of the convolutional nature of the boundary integral

and the inherent sparseness of the finite element matrix, the storage

requirement is kept very low at O(n). These unique features of the
method have already been exploited in other scattering applications

and have permitted the analysis of large-size structures with remark-

able efficiency. In this report, we describe the method's formulation

and implementation for circular and rectangular patch antennas in

different superstrate and substrate configurations which may also in-

clude the presence of lumped loads and resistive sheets/cards. Also,

various modelling approaches are investigated and implemented for

characterizing a variety of feed structures to permit the computation

of the input impedance and radiation pattern. Many computational

examples for rectangular and circular patch configurations are presen-
ted which demonstrate the method's versatility, modeling capability

and accuracy.
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A Finite Elelnent-Boundary Integral Method

for Cavities in a Circular Cylinder

Leo C. Kempel and John L. Volakis

December 22, 1992

Abstract

Conformal antenna arrays offer many cost and weight advantages

over conventional antenna systems. However, due to a lack of rigorous

mathematical models for conformal antenna arrays, antenna design-

ers result to measurements and planar antenna concepts for designing

non-planar conformal antennas. Recently, we have found the finite

element-boundary integral method to be very successful in modeling

large planar arrays of arbitrary composition in a metallic plane. Here-

with, we shall extend this formulation to conformal arrays on large

metallic cylinders. In this report, we develop the mathematical for-

mulation. In particular we discuss the shape functions, the resulting

finite elements and the boundary integral equations, and the solution

of the conformal finite element-boundary integral system. Some valid-

ation results are presented and we further show how this formulation

can be applied with minimal computational and memory resources.
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A classofhybridfiniteelementmethods

forelectromagneticsa review

John L. Volakis, A. Chatterjee and J. Gong

Radiation Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor MI 4810%2122

Abstract

Integral equation methods have generally been the workhorse for antenna and scat-

tering computations. In the case of antennas, they continue to be the prominent
computational approach, but for scattering applications the requirement for large-

scale computations has turned researchers' attention to near neighbor methods such
as the finite element method, which has low O(N) storage requirements and is read-

ily adaptable in modeling complex geometrical features and material inhomogeneities.

In this paper, we review three hybrid finite element methods for simulating compos-
ite scatterers, conformal microstrip antennas and finite periodic arrays. Specifically,

we discuss the finite element method and its application to electromagnetic problems

when combined with the boundary integral, absorbing boundary conditions and arti-

ficial absorbers for terminating the mesh. Particular attention is given to large-scale

simulations, methods and solvers for achieving low memory requirements and code

performance on parallel computing architectures.
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A hybrid finite element-boundary integral

method for the analysis of cavity-backed

antennas of arbitrary shape

Jian Gong, John L. Volakis, A.C. Woo and H.T.G. Wang

Radiation Laboratory

Department of Electrical Engineering

and Computer Science

The University of Michigan

Ann Arbor MI 48109-2122

Abstract

An edge-based hybrid finite element-boundary integral (FE-BI)

formulation using tetrahedrai elements is described for scattering and

radiation analysis of arbitrarily shaped cavity-backed patch anten-

nas. By virtue of the finite element method (FEM), the cavity ir-

regularities, the dielectric super/substrate inhomogeneities and the
diverse excitation schemes inside the cavity may be readily modeled

when tetrahedral elements are used to discretize the cavity. On the

aperture, the volume mesh reduces to a triangular grid allowing the

modeling of nonrectangular patches. Without special handling of the

boundary integral system, this formulation is typically applicable to

cavity-backed antenna systems with moderate aperture size. To retain

an O(N) memory requirement, storage of the full matrix due to the

boundary integral equation is avoided by resorting to a right triangu-

lar aperture grid on taking advantage of the integral's convolutional

property. If necessary, this is achieved by overlaying a structured tri-

angular grid on the unstructured triangular grid and relating the edge

field coefficients between the two grids via a narrow banded, sparse

transformation matrix. The combined linear system of equations is

solved via the biconjugate gradient (BiCG) method, and the FFT al-

gorithm is incorporated in the solver to compute the matrix-vector

product efficiently, with minimal storage requirements.



1 Introduction

Microstrip antennas have been extensively investigated experimentally, ana-

lytically and numerically for decades. By and large, numerical methods have

been serving tile engineers and researchers in the analysis and design of these

conformal antennas for many years. Among them the moment method in

conjunction with various integral equation (IE) formulations played a major

role [1-3]. However, IE methods are associated with field representations in

which the appropriate Green's function for the specific geometry must be

employed and this limits their versatility. Moreover, IE techniques are usu-

ally formulated on the assumption of an infinite substrate, a model which

obviously deviates from the practical configuration leading to inaccuracies

for larger bandwidth antennas. Furthermore, in the context of IE methods,

antenna excitations are represented using simplified models that differ more

or less from the actual configurations. Also, due to the singularity of the cur-

rent distribution near the patch-probe junction(s), special measures must be

taken [4], not to mention additional IE complexities due to possible substrate

anisotropies or inhomogeneities in the antenna substructure. In contrast, the

hybrid Finite Element-Boundary Integral (FE-BI) technique alleviates these
difficulties and this was demonstrated recently when the method was applied

to rectangular patch antennas [5].

In this paper, we present an edge-based hybrid finite element-boundary

integral formulation using tetrahedral elements for a characterization of ar-

bitrarily shaped cavity-backed antennas. An example of such a configuration

is shown in Figure 1, where a cavity is recessed in a metallic ground plane

enclosing the FEM volume and the antenna elements on the aperture may

be excited by different schemes, such as a simple probe, a magnetic frill gen-

erator, a practical coaxial cable, microstrip lines, slots or a CPW line. In the

context of the FEM, the cavity is first discretized into a number of tetrahed-

ral elements that naturally reduce to triangles on the cavity's aperture. For

nonrectangular patches this triangular gridding is, in general, non-uniform

and the exact boundary integral formulation based upon this mesh applies

to any patch shape. As a result, the hybrid FE-BI technique is capable of

modeling arbitrarily shaped cavity-backed antenna configurations, different

substrate inhomogeneities, anisotropies, as well as various practical excita-

tion schemes.

As is well known, the boundary integral (BI) equation subsystem leads

to a fully populated matrix whose size is determined by the number of aper-

ture mesh edges. For large apertures, this analysis becomes impractical in

terms of storage and computation time requirements, and to overcome this

inefficiency, a uniform zoning of the aperture is required as shown in Fig-

ure 2. By resorting to the structured mesh, the boundary integral matrix

can be cast into a discrete convolutional form, thus permitting the computa-

tion of the matrix-vector products via the discrete Fourier transform (DFT)



avoidinga needto store the full BI matrix. This memorysavingschemehas
alreadybeenapplied to IE solutionsinvolving rectangularsurfacegrids [5,6]
and in this paper, wedescribehow the BiCG-FFT solution is implemented
for triangular meshes.The differencesbetweenthe rectangular and triangu-
lar meshesare also describedand results are presentedwhich demonstrate
the method's vesatility in computing the scattering and input impedanceof
variousnon-rectangularprinted antennas.

2 Formulation

In this section, we present the edge-based hybrid FE-BI formulation using

variational principles, where the matrix algebra notation is employed so that

we can readily extend the formulae to the general anisotropic case. We begin

with the vector wave equation,

V x x E - k'_e,E = -jkoZoJ i Vx M i (1)

where Ji and Mi represent interior electric and magnetic current sources

within the cavity V, e, and p, denote, respectively, the relative permittivity

and permeability, and /% is the free space wave number. The solution of (1)

under certain boundary conditions is equivalent to extremizing the functional

JfJv (VxE). (VxE)-k_e,E.E dvF(E, H)

+ jkoZo f£ E x H . dS

,.,
where the surface S emcompases the cavity aperture excluding the portion

occupied by the antenna elements. To proceed with the extremization of F,

it is necessary to write H in terms of E. This can be accomplished through

the surface equivalence principle. Following this procedure, the magnetic

field H in the region exterior to the cavity may be expressed in terms of the

equivalent magnetic surface current

M = 2E x ,_ (3)

whose support is only over the extent of the surface S and the factor of 2 is

due to image theory. Specifically, we have



where H i is the incident field, if any, from the exterior region, H" is the

reflected field due to H i in the absence of the cavity, I is the unit dyad,

and G0(r, r') is the free space Green's function with r and r' denoting the

observalion and integration points. Substituting (4) into (2) yields

1//f {(VxE).l(v xE)-ko2e_E'E} dvF(E)- _ . pr

2j/,'0Z0 [£(E x H_) • _,dS+

,5,

which is now only in terms of electric field. In deriving this, we used the

relation fi x H" = fix H i which is valid when H _ is measured on the ground

plane.

2.1 Cavity Volume Modeling

In proceeding with the discretization of (5), it is convenient to re-express it

as

F = Fv + Fs (6)

where Fv denotes the volume integral contributions and similarly Fs accounts

for the surface integral contributions. The cavity volume is subdivided into

N tetrahedral elements V_ (e=l,2,...N), and within each tetrahedron the field

is expanded as
E = [vIT{E}, (7)

with

[v]o = [{y,,}{yd{y,}],

{v.} = V._
• '1

(')E2
{E}_ = :

t}6 o

u =.,v,z (8)

in which Vui is the u (u = x,y or z) component of the volume vector basis

functions along the ith edge. The unknown vector {E}e has six entries, one



for eachtetrahedronedge.(In this paper,weusesquarebracketsfor matrices
and curly brackets for vectors). Inserting (7) into (5), and taking the first
variation of Ft, with respect to {E}e, yields

6Fv = _ {[.4]e{E}_ + {lq}_} (9)

where

[A]_

{I(}_

[DV] r

fj[£ [v]_ jkoZo J,_
Ji,

0{t;} - g{t_}

N{_5} - {t_}

dv (10)

+ V x -- Jli_ dv (11)
Itr iiz

(12)

To carry out the above integrations, it remains to introduce the volume

expansion or shape functions Vc. For our implementation we employed the

linear edge-based shape functions for tetrahedral elements given in [7,8].

2.2 Aperture Modeling

To discretize the surface integrals in (5), the aperture is subdivided into

triangular elements since these correspond to the faces of the tetrahedrals.

Within each triangle, the field is represented as

E=[sIT{Eo}, (13)

where

[S], =

{s.} =

{E°},

[{&}{&}]°

S,,1
Su2

E°2

Es3 e

u--x,y (14)



where Su, is the u(u = x,y) component of the surface vector basis functions

along the ith edge. On substituting (13) into the surface integrals in (5) and

taking the first variation of Fs with respect to {Es}e, we obtain

6Fs = _ {[B]_{E,}_ + {L}_} (15)
e

//s,//sa {-2kg[&][&]r +2

•G0(r, r') dS dS'

E{£} - oy j b-7 ay'

and

{z}o= j',_koZof£,ts l _Hh, ,is (17)

Note that in (16) the elements of the array [S_] are functions of the observa-

tion vector r, whereas the elements of [S_] v are with respect to the integration

point r'. A suitable set of linear edge-based surface basis functions is

Si(r) = 2) 5 x (r-ri)e(r) r E S'_ (18)
0 otherwise

In this expression, li denotes the length of the ith edge and ri is the position

vector of the vertex opposite to the ith edge. Since each edge shares two

triangles, one is defined as the plus and the other as the minus triangle.

Therefore, e(r) is given by

_" 1 r E S + (19)_(r)

l -1 rE S[

where S_ = S + + S_-. The constant A_ in (18) denotes the area of the plus

or minus triangle depending on whether r E S + or r E ,5'/. We note that

Stir ) x _ yields the basis functions used by Rao, etc. [9] in their moment

method solution of boundary integral equations.

2.3 System Assembly

To construct the final system for the solution of the electric field components

we combine (9) and (15), and after assembly we obtain the system

{[A]{E} + {g}} + {[B]{E,} + {L}} = 0 (20)

In this, {K} and {L} are the excitation vectors due to the interior current

sources and the exterior excitation, respectively. The unknown electric field

vector (E} consists of all field expansion coefficients with respect to the



elementedgesexcept thosecoincidingwith perfectly electrically conducting
(PEC) walls,PEC antennaelement(s)or PEC pins inside the cavity. Finally,
the vector {E,} representsthe unknown surfacefields whoseentriesare part
of those in {E} with their correspondingedgeson the aperture. Explicit
expressionsfor the matricesand vectors in (20) are

" Sii.. v;).,, (,,,A,, = (V × V[). (V × V_)- ' '

Bi_¢ = 2k2 if& [_.xS;(r,]. {iJs., [S:'(r')x-;]Go(r,r')d.'}
ds (22)

+2/fs V s •($;(r) x ._){/_., _7}. [S,'(r')×.;]Go(r.r',d.'} ds

v;{:.o.o.,+.. }..
L: = 2jkoZOf/ss; [n'× a. (24)

when specialized to inhomogeneous, isotropic dielectric cavity fillings. It is

evident, from (21) and (22), that [A] and [B] are symmetric as a result of

the assumed isotropic medium and reciprocity. In addition, [A] exhibits high

sparsity due to the FEM formulation whereas [B] is fully populated. Two

approaches may be followed in carrying out the solution of the combined sub-

systems when an iterative solver is employed such as the biconjugate gradient

(BiCG) method [10]. These two approaches differ in the manner used for the

evaluation of matrix-vector products called for in the BiCG algorithm. One

could sum the coefficient matrices [A] and [B] by adding up the correspond-

ing matrix entries prior to the execution of the BiCG algorithm, or instead

the resulting vectors may be summed up after carrying out the matrix-vector

products. We observed that the first approach is more efficient in terms of

computation time after reordering the combined matrix and storing only the

non-zero elements. This is because in the context of this scheme the combin-

ation of the two matrices is performed only once outside the BiCG iteration.

However, the second approach is compatible with the BiCG-FFT scheme,

when the FFT algorithm is employed to exploit the convolutional property

of the integral operator, thus eliminating a need to explicitly store the en-

tire BI matrix. Below, we discuss the implementation of the matrix-vector

product of the boundary integral system for the BiCG-FFT solution.

2.4 Implementation of the Boundary Integral Matrix

Vector Products Using FFT

To describe the execution of the matrix-vector product in the context of the

BiCG-FFT solution scheme we refer to Figure 2. In this figure we display the



uniform triangular grid which either overlays the irregular aperture grid or

is simply' tile aperture grid which the volume tetrahedral mesh is by design

reduced to during tile discretization process. We recognize that the proposed

triangular grid consists of equal right triangles and thus it involves three

different classes of edges (class 1, 2 and 3). These include the x-directed,

y-directed and the diagonal edges, all of which are uniformly spaced. For

the FFT implementation each class of edges is independently numbered in

accordance with their geometric location. Specifically, the ith class will carry

the numbering (re,n) if the edge is the ruth along the x direction and the

nth along the y direction. The indices (re, n) take the values

m = 0,1,2,...,M i

n = 0,1,2,...,N'

with i = 1 for the y-directed edges, i = 2 for the diagonal edges and i = 3

for the x-directed edges. Consequently, we find that

M-9 i=1
M i = M 1 i 2

M 1 i 3 N-1 i=l
Ni= N-1 i=2

N-2 i=3

(25)

where M and N denote the numbers of elements along the x and y directions,

respectively.

To perform the integrations for the evaluation of the boundary integral

matrix elements, it is now convenient to rewrite the basis functions (18) in

terms of the new indices (rn, n). We readily find that the edge-based basis

functions associated with each of the aforementioned class of edges can be

rewritten as

1 [ (nAy - y)_ + (_ - m±x)fj (_, y) _ S +

S_.(x,y) - Ax I (y-(n+l)Ay)_+((m+2)Ax-z)ft (x,y) ES[ (26)otherwise0

(nAy- y)k + (x - (m + 1)Ax)/) E S +
x/(Ax)2 + (AY)'_ (y - (n + 1)Ay):E + (mAx - x)_t e S; (27)

. S_.(z,y) = AxAy 0 otherwise

{fin + 2)Ay - y)_ + (z - (m + 1)±.)_ (., y) e &+
1 (y - _ay)_ + (mA_ - x)fl (., y) ¢ S: (2S)

S.,.,.x,am(y) _ Ay 0 otherwise

where the superscripts refer to the edge class. Each entry of the boundary

matrix-vector product can now be calculated as

]{BI subsystem} [B] {E.} _ _ _'i _J (29)_. _., ,l..i I,.n _ t I,n i n i "ll-'Ji,'n t _ #

j=l nl=O

in which (m, n) are the geometric location indices for the ith class edges of

observation elements whereas (m', n') are the same for the jth class edges of

8



testing elements. Thus, the specification of the indices i, m and n completely

defines the entry l,'i = n,'ll i + m of the column resulting after the execution

of lhe boundary matrix-vector product. It is readily' found that

ij ._ 2 ffs ffs i j r' (30)B._,m,_, = --ko _ . Sm_ • Sm,_, Go(r, ) dx dv dz' dy'

+ (AxAy)28 ffs, Jfs: ci(r)(j(r)lilaG°(r'r')dzdgdz'dg'

with

li = (Ax)2 + (Ay)2 i = 2 (31)

:Xx i-3

More importantly, it can be shown that the BI subsystem exhibits the con-
0 ij and thus we can rewrite (29)volutional property Bran,m, n, = B(m_m,,n_,_, )

as 3

[BI{E,} = _ B ij * E "i (32)
j=l

where the • denotes convolution. It is now seen that the computation of

the boundary matrix-vector product can be performed by employing the 2-D

discrete Fourier transform (DFT) thus avoiding a need to store the BI matrix

other than those entries which are unique. When the symmetry property of

ij is also invoked, implyingB(._-m,,_-_,)

ij ji (33)
B(m_=,,._.,) = B(_,_=,.,_.)

it is concluded that the total non-redundant entries in the BI matrix are

3 3

Np = E _-, Ni( Mi + M'i - 1)
i=1 j=l

(34)

This should be compared to the (Zia=.I M iNi)2 entries whose storage would

normally be required if the BI system was not cast in convolutional form. We

remark that Np is nevertheless equal to twice the number of entries required

for uniform rectangular grids [6] for one class of edges. To avoid aliasing, it

ij = B_J(_, fi) be cast in a 2-D array which hasis necessary that B(.__._,,._,,,)
the usual periodic form and zero padding may also be required to make use
of the standard FFT routines. Specifically, the matrix-vector product (29) is

9



executedby using tile MFTxNFT array

B'J(-_, -_),

F_(-77,, -fi),
MFT-M i+l < N< MFT

0<fi<N _

B ii ( ,7_,fi - 1 - NFT),
0 < N < 3P

NFT-N j+l < fi< NFT

Bo(N - 1 - MFT, fi - 1 - NFT),

0 otherwise

MFT-M i+ 1 <,7, < MFT

NFT-NJ+I < fi< NFT

with the corresponding field vector given by

(35)

{ EJ(N, fi) 0<N<M j, 0<fi<N j (36)E_(N,g) = 0 otherwise

and MFT and NFT must be powers of 2 if a radix 2 FFT is used.

In the BiCG-FFT algorithm the BI subsystem vector is computed as

3

{BI subsystem} = E _ {DFT-' {DFT{B_J} •DFT{E¢}}}
i=l

(37)

The presence of the operator S indicates the necessary reordering of the 2-D

array which results after the inverse FFT operation into a single column with

the proper indexing for addition to the FEM subsystem.

3 Mesh Overlay Scheme for Nonrectangular

Patches

As described above, the BiCG-FFT solver requires uniform aperture gridding

so that the BI subsystem can be put in block circulant form. This can be

always achieved during mesh generation whenever the patches are rectangular

in shape or in case of radiators which are placed at some distance (usually

small) below the aperture. However, for circular, triangular, or other non-

rectangular patches on the aperture, it is not possible to construct a uniform

mesh using the mesh generator. Typically, the aperture mesh is necessary

to comform to the patch shape, leading to an unstructured surface grid. In

this case, to make use of the efficient, low memory BiCG-FFT algorithm, an

approach is to overlay on the unstructured aperture grid another coincident

structured grid as shown in Figure 3. The boundary integral subsystem is

10



then constructed by using the overlaid uniform grid whose edge fields can be

related to those on the unstructured grid via a sparse transformation matrix.

That is, it is necessary to append to the system (20) the relations

{E,}. =
(E,}.. = [TB]{E,}. (3S)

where the subscripts u and nu refer to the field coefficients of the uniform

and non-uniform aperture grids, respectively. Also, [Tr] and [T_] refer to the
forward and backward transformation matrices, respectively, with :V_ and

N,,,, denoting the numbers of the uniform and non-uniform mesh edges on

the cavity aperture.

To derive the elements of [TF], we begin with the expansion (13) and

enforce it at three points on each edge belonging to the uniform grid. We

conveniently place these three points at the center and ends of the edge (see

Figure 4). Given tile fields at these points, we can approximate the field

along the (m, n) edge of the uniform grid using the weighted average

1 f 1 Nendl

-e_ " _ Z Ekn_'(rend')2 2 Nend, k=l

1 Nmid

Enu(rmid)+ N_d _ k
k=l

Nend_ )
Enu(rend2)

+ 2Nend2 k=l
(39)

in which _,, denotes the unit vector along x,y or the diagonal, depending

on the class of edge being considered. The quantities Ek,,_ represent the

fields in the non-uniform grid triangles with the superscript k being a sum

variable in case r.,,d,, r,,,d_ or rmld specify a point shared by more than one

triangle. Obviously, N, ndl, Nmld and N,,d2 denote the number of non-uniform

grid triangles sharing the node at r,nd,, rmid and r,nd2, respectively, and will

typically be equal to unity.

After assembling (39) into (38) we find that the elements of the forward

transformation matrix are given by

(TFhj
Nend i 3

1. 1

2Nend, k=l g=l

I Nmid 3

eij, Se(rmid)
+ Nnfid Z Z k

k=l t=1

I N, nd_ 3 /

ei.i,Se (rend2) (40)

11



in which

1 j=jteijt = 0 otherwise

and the global indices i and j correspond to the ith uniform grid edge and

the jth non-uniform grid edge. The subscripts jt is the global index used

in numbering tile non-uniform grid edges, whereas the subscript t_ (= 1, 2

or 3) is the local edge index used in the definition of the basis functions St

(see (13)). We remark that the explicit computation of the transformation
matrix elements results in a substantial programming simplification because

it avoids the usual assembly process. Following the same procedure, we can

obtain the elements of the backward transformation matrix. Assuming each

uniform grid edge traverses on three or less non-uniform grid triangles, the

non-zero entries in each row of [Tr] will be 9 or less. However, they can

reach a maximum of 18 if the midpoint and endpoints reside on an edge of

the non-uniform grid. The maximum non-zero entries in each row of [TB]

will be 15, but the typical number will be much less.

4 Numerical Considerations

Based on the presented FE-BI formulation, a computer program was written

for the analysis of the radiation and scattering by cavity-backed patch anten-

nas of arbitrary shape. The antenna geometry is supplied to this program in

an input file which as a minimum, it must contain lists of (a) the nodes and

their (x, y, z) coordinates, (b) the nodes forming each tetrahedron, (c) the

nodes on the cavity aperture, and (d) the nodes on metallic boundaries.

For arbitrary antenna geometries, it is necessary to employ a sophisticated

volume mesh generation package and a number of these are available com-

mercially. Typically each of these packages generates a "Universal file" which

can be readily preprocessed to extract the aforementioned input lists.

A major effort was devoted in writing the program in a manner which

minimizes the storage and computational requirements. Specifically, the BCs

on the metallic surfaces are enforced a priori to obtain a system which in-

volves only nonzero field components. The sparse finite element matrix was

stored as a single array of length N, Nn,, where N. is the total number of

unknowns within the cavity volume and N,,, denotes the maximum number

of nonzero row entries. The BI matrix was stored in different ways depending

on whether the FFT was to be employed for the evaluation of the matrix-

vector products. If the BiCG solution was to be carried out without the

FFT, then the No x N, BI integral matrix was added to the FE array res-

ulting in a 1-D array about N_Nn, + N_ long. For slot antennas, including

cavity-backed spirals, and moderately sized systems, it was found preferable

not to use the FFT, thus avoiding any discretization errors. In that case

the generation of a single combined FE-BI matrix before execution of the
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Bi('G algorithm reduces the computational requirements because a number

of operations associated with tile repeated combinations of ttle FE and BI
sIal)systems within the BiCG iteration is avoided.

When the FFT is to be used as part of the BiCG solver the FE and BI

mat rices must be kept in separate arrays throughout the execution process.

In this case ttle FE matrix is again stored as a single array and similarly

the non-redundant elements of the BI matrix are stored in a single array

of length 9.V(2.1I - 1). The factor of 9 is due to tile three classes of edges

and as usual M and N denote the number of elements along the _r and ?j

directions, respectively. Because of the storage and computational efficiency

of BiCG-FFT algorithm, it is necessary to resort to uniform aperture grids

for conformal antennas involving substantial number of aperture edges. Of

course, one should always use uniform triangular grids when the patches

on the aperture are rectangular or if the array is simply covered by a su-

perstrate. In the case of circular patches it will be necessary to overlay a

structured triangular grid over the unstructured grid generated by the mesh

generator. This must be done in the preprocessing stage and should be taken

into account when constructing the FE matrix. For scattering computations,

the overlay of the structured grid is almost always the preferred approach

because it does not, generally, compromise the accuracy of the computed

scattering cross section. However, for antenna parameter computations, the

interpolation scheme between the structured and unstructured grid edges

may be of concern, depending on the specific antenna geometry. Generally,

circular slots and spirals should be treated without resorting to structured

grids and to our experience this does not cause large computational burden

because these antennas are associated with small apertures. In the case of

circular patches, the structured grid was not seen to compromise the com-

putational accuracy. Of course, conclusions based on one type of antenna do

not necessarily apply to others, and thus the suggested alternatives must be

examined separately for each antenna before choosing one approach over the

other. Of importance here is that the formulation is suitable for modeling

any antenna shape and feed structure.

5 Results

We present below some representative numerical results for the purpose of

validating and demonstrating the robustness of the tetrahedral formulation

for scattering and radiation by different configurations of cavity-backed an-

tennas. In each case the computed results via the FE-BI method are com-

pared with reference measured or calculated data.

BiCG-FFT algorithm validation: To validate the BiCG-FFT implement-

ation for the boundary integral matrix-vector products described in section

2.4, we consider the scattering by a circular patch placed 0.325 cm be-
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low the aperture of a rectangular cavity (recessed in a ground plane) of

7.8 cm × 5.2 crn x 0.975 crn. The geometry is illustrated in Figure 5 and

we remark that the patch was purposely submerged so that the structured

grid using a mesh generation package was available on the aperture. A bi-

static radar cross section (RCS) pattern is shown in Figure 5(a) as computed

with and without use of the FFT in the BiCG algorithm for matrix-vector

products. As seen, the two solution procedures give identical scattering pat-

terns for two different cavity dielectric filling.

Overlay scheme validation: To validate the structured/unstructured mesh

overlay scheme discussed earlier, we calculate the scattering by a circular

patch (0.1 cm radius) placed on the aperture of a rectangular cavity 0.4 cm

per side and 0.1 cm deep. The bistatic radar cross section (RCS) patterns are

shown in Figure 5(b) as computed with and without use of the overlay scheme

for normal and 30 ° off ground plane incidence. The dielectric fillings were

chosen as er = 4 and er = 2 for normal and oblique incidence, respectively. Of

course, the FFT was only employed in connection with the overlaid structured

mesh.

Scatterin9 by a circular patch: Figure 6 illustrates a circular patch resid-

ing on the surface of a 0.406 cm thick substrate having a relative dielectric

constant of er = 2.9. The patch's diameter is 2.6 cm and the substrate is

enclosed in a circular cavity 6.292 cm wide. This cavity and the patch were

recessed in a low cross section body for measuring its RCS. A comparison

of the measured and calculated backscatter a00 RCS as a function of the

frequency is shown in Figure 7. For this computation the direction of the

incident plane wave was 60 ° from normal, and as seen the agreement between

measurements and calculations is very good throughout the 4-9 GHz band.

Input impedance measurements and calculations for the same patch are dis-

played in Figure 7. The feed in this case was placed 0.8 cm from the patch's

center and it is again seen that the measurements and calculations are in

good agreement.

Scatterin 9 by a square archimedean spiral: Figure 8 displays a square

archimedean spiral. A square rather than a circular spiral was selected be-

cause it allowed comparisons with calculations based on a different technique.

The subject complimentary square spiral consists of strip arms, each of width

0.09375 cm, and is placed (free-standing) on the aperture of a square air-filled

cavity 2.812 cm per side and 0.9375 cm deep. The _ = 45 ° plane (7oo and

_r_,_ bistatic (incident plane wave was at 30 ° off normal) RCS patterns for

this structure are shown in Figure 8. It is seen that the _r00 + (r_,_, RCS com-

pares well with the corresponding data based on the finite difference--time

domain (FD-TD) method [13]. No FD-TD data were available for the go_

RCS pattern but as expected, the g4,4, RCS return is much lower and vanishes

at grazing.

Annular slot impedance: Figure 9 shows a narrow circular (0.75 cm wide)

annular slot situated in a circular cavity 24.7 cm wide and 3 cm deep. Be-
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is very small for this application and asa result there is no needto invoke
tile FFT in tile BiCG algorithm. The FE-BI method is basically quile ef-
fective in modelingsmall aperture configurationswithout a needfor special
computational considerations. Input impedancecalculations as a function
of frequencyfor this radiator, excited by a probe placedacrossthe slot, are
shown in Figure 9, and agreewell with the valuescalculated via a modal-
boundary integral method [14]. For thesecalculations, the frequency was
sweptfrom 700-1000MHz. The dielectric constantof the material filling the
cavity wasset to e_ = 1.3.5 as in [14] and this is an effective value to account

for the presence of a dielectric slot cover used as part of the measurement

model for holding the plate.

Radiation by a one-arm conical spiral: We considered the modeling of this

radiator to demonstrate the geometrical versatility of the FE-BI method. A

configuration of the spiral radiator and surface mesh is illustrated in Figure 10

from different views. The top and bottom edges of the strip forming the

spiral follow the lines p = 0.0503)_exp[0.221(¢ + 2.66)], z = a+ exp(0.221¢),

where (p, ¢, z) denote the standard cylindrical coordinates, a+ are equal to

0.0832_ and 0.0257_, respectively, and 0 < ¢ < 2r. This spiral arm resides

on an inverted cone (9.24 cm tall) whose bottom cross section has a diameter

of 1.68 cm and the top cross section has a diameter of 21.78 cm. For our

calculations ,k = 30 cm (f = 1 GHz) and the spiral was situated in a circular

cavity 10.01 cm deep. The computed E¢ radiation pattern taken in the

¢ = 90°-plane, using a probe feed at the cavity base, are given in Figure 11.

It is seen that the E¢ principal plane pattern is in good agreement with the

data given in [12]. However, the Ee pattern differs from the measured data

primarily because of the circular cavity included in the analytical model. The

latter was not part of the measurement configuration which consisted of the

spiral antenna on a large circular plate.

6 Conclusion

We presented a hybrid finite element-boundary integral (FE-BI) formula-

tion which incorporates linear tetrahedrals. The method was specifically

developed for the radiation and scattering analysis of cavity-backed printed

antennas, where the FEM is used for modeling the cavity region and the BI

equation acts as a global boundary condition for terminating the mesh on

the cavity aperture. The FE-BI formulation is particularly suited for the

analysis of complex configurations and much emphasis was given here in de-

veloping a solution technique requiring O(N) storage in spite of the resulting

full BI subsystem. The latter was achieved by making use of the convolu-

tional property resulting from the structured mesh, thus permitting use of

the FFT in the BiCG solver for computing the matrix-vector products. For

scattering calculations associated with large aperture structures, use of the
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FFT provedessentialin minimizing the computational requirements.
A number of patches,slots as well as planar and non-planar spiral an-

tennaswere analyzed for the purposeof demonstrating the versatility and
accuracyof the FE-BI technique.Certainly, the need to use a sophisticated

mesh generation package is deterrent to the application of the technique for

the analysis of simple antenna configurations. However, this is unavoidable

when dealing with complex geometries and, moreover, the pervasive use of

such commercial packages on desktop computers makes the technique quite

attractive.
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circular patch

Figure 3. Overlay of a structured aperture mesh over an unstructured mesh,

shown here to conform to a circular patch.
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Figure 5(a). Comparison of the a** bistatic RCS patterns for the illustrated circular

patch as computed by the FE-BI method with and without the mesh

overlay scheme. The computation frequency was f = 6 GHz with
normal incidence.
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Figure 5(b). Comparison of the bistatic RCS patterns for a circular patch of radius

0.1 cm (residing in a 0.4 x 0.4 x 0.1 rectangular cavity) as calculated
with and without the mesh overlay scheme. The frequency was f=20

Gttz and the shown patterns correspond to two incidence angles, one

at 0 = 0* (_, = 4) and the other at 0 = 60* (_, = 2) from normal.
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Figure7. Comparisonof the computed and measured input impedance for the

circular path shown in Figure 5. The feed was placed 0.8 cm from the

center of the patch and the frequency was swept from 3 to 3.8 GHz.
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Figure 8. Geometry and bistatic RCS calculations at f=4.5GHz for a square

archimedean spiral situated on the aperture of a square 2.8125 cm per
side and 0.9375 cm deep cavity.
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Figure 10. Illustration of the configuration and mesh of the one-arm conical spiral

used for the computation of Figure 11 (the mathematical definations

of the spiral edges are given in section 5).
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